Engineering and analysis of a Saccharomyces cerevisiae strain that uses formaldehyde as an auxiliary substrate.

نویسندگان

  • Richard J S Baerends
  • Erik de Hulster
  • Jan-Maarten A Geertman
  • Jean-Marc Daran
  • Antonius J A van Maris
  • Marten Veenhuis
  • Ida J van der Klei
  • Jack T Pronk
چکیده

We demonstrated that formaldehyde can be efficiently coutilized by an engineered Saccharomyces cerevisiae strain that expresses Hansenula polymorpha genes encoding formaldehyde dehydrogenase (FLD1) and formate dehydrogenase (FMD), in contrast to wild-type strains. Initial chemostat experiments showed that the engineered strain coutilized formaldehyde with glucose, but these mixed-substrate cultures failed to reach steady-state conditions and did not exhibit an increased biomass yield on glucose. Subsequent transcriptome analyses of chemostat cultures of the engineered strain, grown on glucose-formaldehyde mixtures, indicated that the presence of formaldehyde in the feed caused biotin limitations. Further transcriptome analysis demonstrated that this biotin inactivation was prevented by using separate formaldehyde and vitamin feeds. Using this approach, steady-state glucose-limited chemostat cultures were obtained that coutilized glucose and formaldehyde. Coutilization of formaldehyde under these conditions resulted in an enhanced biomass yield of the glucose-limited cultures. The biomass yield was quantitatively consistent with the use of formaldehyde as an auxiliary substrate that generates NADH and subsequently, via oxidative phosphorylation, ATP. On an electron pair basis, the biomass yield increase observed with formaldehyde was larger than that observed previously for formate, which is tentatively explained by different modes of formate and formaldehyde transport in S. cerevisiae.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Production of Single Cell Protein from Sugarcane Bagasse by Saccharomyces cerevisiae in Tray Bioreactor

In this study, solid state fermentation (SSF) was carried out to produce single cell protein (SCP) from sugarcane bagasse using Saccharomyces cerevisiae. The SSF experiment were performed in a tray bioreactor. The influence of several parameters including extraction buffer, initial moisture content of substrate, fermentation time, relative humidity in bioreactor, the bioreactor temperature and ...

متن کامل

Characterization of an Interesting Novel Mutant Strain of Commercial Saccharomyces cerevisiae

The yeast strains that are resistant to high concentration of ethanol have biotechnological benefits and aresuitable models for physiology and molecular genetics research fields. A novel ethanol-tolerant mutant strain,mut1, derived from the commercial Saccharomyces cerevisiae showed higher ethanol production, and alsodemonstrated resistance to ethanol but not to other alcohols...

متن کامل

Isolation, Subtype Determination, Cloning and Expression of HBsAg Gene from an Iranian Carrier in Saccharomyces cerevisiae

The Hepatitis B Surface antigen ( HBsAg) gene was isolated from an Iranian HBeAg positive carrier by PCR. The gene was cloned in pUC19 for sequencing and pYES2 for expression in Saccharomyces cerevisiae, which pNF1 and pDF3 constructs were made respectively. The sequencing data showed that the isolated HBsAg gene shared more than 90% homology with the ayw subtype. The pDF3 was transferred into ...

متن کامل

بررسی اثر ساکارومایسس سرویزیه بر حرکت، الاستاز و آلکالین پروتئاز در سودوموناس آئروجینوزا

Background and Objective: According to definition of probiotics by WHO/FAO that is “Live microorganisms which, when present in sufficient amount, confer beneficial effects to the host”. Saccharomyces cerevisiae is the first non-pathogenic yeast which is known as a probiotic for humans that its helpful effects for humankind has been proved. Pseudomonas aeruginosa is one of the most ...

متن کامل

Characteristics of Saccharomyces cerevisiae isolated from fruits and humus: Their suitability for bread making

The objectives of this study were to clarify whether the wild yeast isolated from fruits and humus is suitable forbread making. Using colony PCR, assimilation of carbohydrate and 18S rRNA sequencing, seven strains fromamong 70 samples were identified as Saccharomyces cerevisiae. The ethanol and CO2 production by the 10-2 wild yeast strain were highest among the strains. The pH and utilized gluc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 74 10  شماره 

صفحات  -

تاریخ انتشار 2008